
BlueData EPIC™ Software Platform

White Paper

www.bluedata.com

BlueData Storage Options

This technical white paper describes the 
various storage options and means by 
which the BlueData EPIC platform makes 
datasets available to containerized clusters 
for Hadoop, Spark, and other distributed Big 
Data platforms. It also describes how EPIC 
can use a persistent external storage pool 
to statefully migrate containers.

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Table of Contents
1. Data Storage Considerations 1

Data Locality 1

2. Local Data Storage 2

Node Storage 2

3. Remote Data Storage 4

4. Tenant Storage for Local Data Access 5

5. Comparing Data Access Modes 6

6. Stateful Container Migration 7

Use Cases 7
Enabling Container Migration 7

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 1

1. Data Storage Considerations
We must begin our discussion about the various options for 
storing and accessing Big Data by considering the following 
common challenges:

• The access to data must be fast.

• The cost of storing data must be reasonable.

These two needs are often in conflict because fast storage is 
often expensive. Additionally:

• Data may need to be shared between clusters or persist 
beyond the lifespan of a single cluster.

• Multiple data access protocols must be supported.

• Compute and storage resources must be able to scale 
independently of each other.

Each of these challenges places different requirements on the 
storage architecture.

Data Locality
In the context of Big Data (and Hadoop in particular), the term 
data locality refers to storing the data to be analyzed on persistent 
storage “near” where the software doing the analysis is 

executing. In a deployment with physical servers on-premises, 
this means storing the data to be analyzed on disk drives located 
in the same physical server that is running the data analysis 
software. The typical reasons for co-locating data and compute 
resources are:

• Local disks are faster than networks at delivering data to the 
CPU.

• Big Data-related tasks spend most of their time reading data.

This deployment model achieves scalability by running many 
physical servers in parallel, where each server runs the same 
software and processes the portion of the dataset stored on that 
individual server. Results are aggregated and reported once the 
data analysis is complete. The traditional Hadoop infrastructure 
architecture is designed around the goal of data locality, and 
Hadoop is often said to “bring the compute to the data.”

Figure 1 illustrates how the Hadoop Distributed File System 
(HDFS) and Hadoop YARN Node Manager service run a Big Data 
job by breaking it into tasks and then running each task on the 
server where the data for that task is located.

Figure 1: Physical Hadoop cluster

Physical Server

TASK

HDFS Data Node

HDDHDDHDD

Physical Server

TASK

HDDHDDHDD

Physical Server

TASK

HDDHDDHDD

Typical physical Hadoop cluster with local HDFS

YARN Node Manager YARN Node Manager

HDFS Data Node

YARN Node Manager

HDFS Data Node

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 2

2. Local Data Storage
The BlueData EPIC software platform supports multiple storage options for running Big Data workloads such as Hadoop and Spark in 
containerized environments, including the data access model described in “Data Locality” on page 1. For example, HDFS can be 
provisioned within the Docker containers that comprise a virtual Hadoop cluster, as shown in Figure 2.

Figure 2: HDFS running inside a virtual cluster with BlueData EPIC

This method of deploying a Big Data cluster on the EPIC platform 
replicates that of bare metal. The underlying storage for the HDFS 
Data Nodes in the containers resides on local disks in the physical 
servers hosting those containers. BlueData EPIC refers to the set 
of local disk drives used for this purpose as Node Storage.

Node Storage
Installing an EPIC host reserves a subset of the local disks on that 
host for Node Storage. EPIC creates Linux physical volumes on 
those disks, and then uses those physical volumes to create a 
Linux volume group called VolBDSCStore. A Linux Logical 
Volume named thinpool is then created from this Linux volume 
group. This Linux logical volume is assigned to the Linux Docker 
subsystem, which then uses the Linux device mapper functionality 
to allocate portions of the thinpool logical volume to the 
containers running on that host for use as local storage within 
those containers.

Figure 3 shows the Linux physical volumes on an EPIC host. In 
this example, the single local hard disk /dev/sdb1 is allocated as 
a physical volume to the VolBDSCStore volume group.

Figure 3: Linux physical volumes on a BlueData EPIC host

Physical Server

HDD

TASK

Virtual Hadoop cluster in BlueData EPIC with local HDFS data storage

Container running Hadoop

Storage

HDD HDD

YARN Node Manager

HDFS Data Node

Physical Server

HDD

TASK

Container running Hadoop

Storage

HDD HDD

YARN Node Manager

HDFS Data Node

Physical Server

HDD

TASK

Container running Hadoop

Storage

HDD HDD

YARN Node Manager

HDFS Data Node

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 3

Figure 4 shows the thinpool logical volume created from the 
VolBDSCStore volume group.

Figure 4: Thinpool logic volume created from VolBDSCtore

Figure 5 shows the device mapper devices created by the Docker 
system from the thinpool logical volume for use by the 
containers. In this example, there are three active containers 
running on the EPIC host.

Figure 5: Device mapper devices created by the Docker system

Containerized local HDFS storage provides the flexibility and 
resource management power that comes from running a Big Data 
application in containers without sacrificing performance. 
However, the cost of this approach is the same as that incurred 
when running Big Data on a bare-metal cluster: Data must be 
copied into HDFS running in the cluster prior to beginning a data 
analysis job. The copying process can be time-consuming, 
depending on dataset size, which can lengthen time to insight.

It may be acceptable to pay this time and cost penalty in order to 
populate the local HDFS for a physical deployment of a Big Data 
cluster in situations where resource flexibility, agility, and 
maximizing the use of the available hardware are not primary 
concerns. It is not acceptable in a containerized environment 
where speed, flexibility, and agility are key. Further:

• Data ingested into the cluster HDFS file system will be lost 
when the cluster is destroyed.

• The compute resources used by the virtual cluster cannot be 
repurposed without losing the stored data.

• Compute and storage resources cannot be scaled 
independently. Adding storage capacity requires adding 
compute resources, and vice-versa.

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 4

3. Remote Data Storage
Getting the maximum flexibility from a container-based platform 
such as BlueData EPIC requires being able to independently scale 
compute and storage resources. It is also essential to be able to 
support the persistence of Big Data datasets beyond the lifespan 
of a Big Data compute cluster.

Let us reexamine the arguments for co-locating compute and 
storage in Big Data clusters in light of recent hardware 
infrastructure improvements:

• Local disks are faster than networks at delivering data to 
the CPU: Recent studies reveal that reading data from local 
disks is not much faster than reading that data from remote 
disks over the network, thanks to network infrastructure 
improvements. For example, this paper on disk locality from 
U.C. Berkeley’s AMPLab shows that network speeds are 
increasing while disk storage speed has leveled off.

• Big Data-related tasks spend most of their time reading 
data: There is a practical limit to how many disks can be 
used, and technologies such as data compression and 
deduplication are increasingly being used to pack more data 
onto existing hard disks. This means that Big Data tasks are 
spending less time waiting for disk I/O requests to complete 
and more time uncompressing and then processing data. This 

phenomenon negates the second argument for co-locating 
compute and storage resources.

The fewer bytes that must be read across the network, the less 
time required to transfer data. The same amount of 
uncompressed data can be delivered to the CPU more quickly via 
the network.

BlueData capitalized on this by developing a container-based 
infrastructure software platform to support compute and storage 
separation for Big Data applications. The BlueData DataTap and 
IOBoost technologies allow Big Data clusters running on the EPIC 
platform to access remote data, regardless of location or format.

DataTap creates a logical data lake overlay that enables access to 
shared data in enterprise storage devices. This allows users to 
run Big Data jobs using existing enterprise storage, without 
needing to make time-consuming copies or transfers of data to 
local HDFS. IOBoost augments DataTap flexibility by adding an 
application-aware data caching and tiering service to ensure 
high-speed remote data delivery.

Figure 6 shows how DataTap and IOBoost allow the BlueData 
EPIC platform and remote storage resources to scale 
independently. Big Data datasets persist beyond the lifespan of 
the compute clusters, and hardware utilization is maximized.

Figure 6: DataTap connection to remote enterprise storage for a virtual cluster in BlueData EPIC

Physical Server

TASK

Remote enterprise storage accessed by a virtual cluster in BlueData EPIC with DataTap

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

Physical Server

TASK

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

Physical Server

TASK

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

Enterprise Storage Device

HDD HDD HDD HDD HDD HDD HDDHDD HDD HDD

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com

https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/disk-irrelevant_hotos2011.pdf


www.bluedata.com

White Paper: BlueData Storage Options

Page 5

4. Tenant Storage for Local Data Access
The unique DataTap and IOBoost technologies included in 
BlueData EPIC enable remote data access to achieve compute and 
storage separation for Big Data workloads. In early on-premises 
BlueData deployments, this required a high-performance network 
infrastructure.

Later versions of BlueData EPIC removed this requirement by 
developing an alternative on-premises deployment pattern that 
leverages the fact that EPIC is typically deployed on servers with 
considerable local storage capacity. This pattern avoids the 
problems of allocating this storage solely to the local physical 
cluster (e.g. local HDFS) by using an alternate storage 
configuration that allows customers to:

• Achieve the flexibility of compute and storage separation.

• Remove the requirement for a high-performance network 
between the physical hosts.

• Maintain data persistence beyond the lifespan of a virtual 
cluster.

To do this, EPIC deploys HDFS on the local disks within the 
servers running the EPIC services. This local storage allocation is 
referred to as Tenant Storage. The DataTap interface then 
surfaces the physical locations of the Tenant Storage data blocks 
to the containers that make up the virtual cluster. This allows the 
Big Data task scheduling software running within the containers 
to route Big Data tasks to the containers running on the physical 
servers where copies of the needed HDFS data blocks reside.

Data stored in Tenant Storage cannot be shared between tenants, 
in order to maintain tenant data security. This is unique with 
respect to the use of DataTap and Tenant Storage. Other uses of 
DataTap (e.g. for remote data access) allow data to be shared 
between tenants.

This behavior mimics bare-metal Big Data deployments, thereby 
preserving the performance advantages of data locality without 
losing the flexibility and agility of a container-based virtualized 
compute platform. It also allows Big Data datasets to persist 
beyond the lifespan of a given Big Data cluster. Figure 7 shows 
how this configuration works.

Figure 7: DataTap connection to local HDFS running in a virtual Hadoop cluster with BlueData EPIC

Intel conducted a comprehensive performance benchmark comparison of Big Data workloads running on bare metal vs. running on the 
BlueData EPIC platform with this configuration. This comparison determined that there was no performance loss.

Physical Server

TASK

DataTap to local HDFS Tenant Storage in a virtual Hadoop cluster with BlueData EPIC

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

HDFS Data Node

HDDHDDHDD

Physical Server

TASK

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

HDFS Data Node

HDDHDDHDD

Physical Server

TASK

Container running Hadoop

IOBoost Service

YARN Node Manager

DataTap Access

HDFS Data Node

HDDHDDHDD

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com

https://software.intel.com/en-us/articles/bare-metal-performance-for-big-data-workloads-on-docker-containers


www.bluedata.com

White Paper: BlueData Storage Options

Page 6

5. Comparing Data Access Modes
The BlueData EPIC software platform supports three modes of data access for virtual Big Data clusters (such as Hadoop and HDFS) in 
an on-premises deployment:

These three methods of accessing data give enterprises the freedom to achieve their Big Data access goals regardless of their 
performance, cost, resource scalability, or protocol support constraints.

Data access mode Advantages and considerations

In-cluster HDFS access using local compute server storage Advantage:
High performance due to co-location of compute and storage 
resources.

Consideration:
Data not persisted beyond the life of the virtual cluster.

Remote data access using DataTap and IOBoost acceleration Advantages:
• Permits remote access to shared enterprise storage 

systems, regardless of data access protocol.

• Data persisted beyond the life of the virtual cluster.

• Independent scalability of compute and storage resources.

Consideration:
Requires a high-speed network connection between the compute 
servers and remote storage.

DataTap and IOBoost access to Tenant Storage Advantages:
• High performance due to co-location of compute and storage 

resources.

• Data persisted beyond the life of the virtual cluster.

Consideration:
Local storage is required on the EPIC compute servers, meaning 
that compute and storage resources cannot scale independently.

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 7

6. Stateful Container Migration
BlueData EPIC allows you to specify an external persistent 
storage pool using the Persistent Storage tab of the System 
Settings screen. Persistent storage exists on a remote storage 
resource that is pointed to but not managed by EPIC. You can 
create, expand, and shrink storage capacity just as you would any 
other resource. This feature allows you to migrate containers 
between hosts by (default) preserving the following critical 
container folders for ongoing use:

• /usr

• /opt

• /var

• /etc

• /home

The contents of other folders can be preserved during container 
migration by specifying their names in the metadata JSON file 
when creating a new application image generated using the App 
Workbench.

Use Cases
Big Data applications such as Hadoop and Spark offer robust high 
availability capabilities; however, some enterprise customers have 
operational requirements that require the ability to move virtual 
nodes/containers from one host to another. These operational 
requirements include:

• An EPIC host crashing and the containers that were running 
on that host must be redeployed on other working EPIC hosts 
with minimal downtime and no additional configuration 
required.

• One or more EPIC host(s) needs to be replaced for 
maintenance and/or as part of a server refresh cycle. In this 
scenario, all of the containers running on those hosts must be 
seamlessly moved to other EPIC hosts that are not being 
replaced, with minimal downtime to the applications running 
in the containers.

• Resolving a condition where there is an inability to meet the 
SLA for an application running in a containerized clusters 
(e.g. Spark or Hadoop) due to poor performance (CPU, 
network, or storage). This is a resource contention 
(bottleneck) condition that requires a re-balancing of virtual 
nodes onto EPIC hosts with more available resources.

Enabling Container Migration
Once you have enabled persistent storage, the next step is to 
create one or more flavor(s) that include at least 20GB of 
persistent storage. Containers created using a flavor with 
persistent storage enabled will be preserved as described above. 
You may also assign a persistent storage quota to EPIC tenants.

Note: Containers created using a flavor that does not have persistent 
storage enabled will not benefit from this feature, even if you later edit 
the flavor to enable persistent storage.

Note: You may create a flavor that specifies persistent storage even if 
no persistent storage has been defined in the Persistent Storage tab; 
however, EPIC will return an error if you attempt to use this flavor 
before enabling persistent storage.

Note: The persistent storage resource must have enough free capacity 
to accommodate the sum of all tenant persistent storage quotas or to 
accommodate the amount of persistent storage specified in all 
applicable flavor(s) times the number of containers that use the 
flavor(s), whichever is greater. Further, if you specify a per-tenant 
persistent storage quota, then that quota must be large enough to 
accommodate the flavor-defined persistent storage times the number 
of containers using the applicable flavor(s).

There are two ways to use persistent storage to migrate a 
container:

• Worker Vacate: If a Worker host goes down and some or all 
of the containers on that host use persistent storage, then 
you can click the Worker Vacate button (moving dolly) for the 
desired host in the Installation tab of the EPIC Installation 
screen to perform a Worker vacate function. All jobs running 
on the affected container(s) will end, but the containers 
themselves will be recovered as follows:

- EPIC will not place any new containers on the affected 
host.

- The protected containers are removed from the affected 
host.

- EPIC automatically migrates those containers to one or 
more new host(s), provided that the EPIC platform has 
sufficient available resources, including any applicable 
placement constraints. 

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com



www.bluedata.com

White Paper: BlueData Storage Options

Page 8© 2019 BlueData

• Node Migration: This use case applies to a scenario where 
the hosts are functioning properly but are overburdened. In 
this case, the Tenant Administrator or Platform Administrator 
can add new hosts to the EPIC platform. Containers can then 
be migrated to the new host(s) on a container-by-container 
basis. Placement constraints apply to this type of container 
migration as well.

The following storage systems are supported for EPIC persistent 
storage:

• CEPH RBD (on-premises/hybrid only)

• NFS (on-premises/hybrid only)

• ScaleIO (on-premises/hybrid only)

• EBS (AWS only)

Migrating a container (virtual node) has the following effects:

• The cluster to which the container belongs will be stopped 
and unavailable until the migration completes.

• Any jobs or ActionScripts running on a cluster with one or 
more migrating container(s) will be lost and must be run 
again after completing the migration.

• Any data residing in non-persistent storage directories of a 
container being migrated will be lost.

• Any external host(s) that have access to the EPIC platform 
will be unable to access the affected container(s) until the 
migration process completes.

• Migrated containers maintain their configuration and IP 
addresses.

When migrating containers using EPIC on AWS:

• Volumes are created and tagged with the following tags:
- "Application":"BlueData EPIC"

- "ControllerID":"<controller_id>"

- "Name":"<image_id>" -- EPIC uses this tag to find 
the volume ID that is used to query and delete volumes.

• EBS volumes are created and attached to the EC2 instance 
that hosts the migratable container(s). EPIC uses device 
names similar to /dev/sda, /dev/sdb, and so on. AWS 
may internally renames these device names, such as 
renaming /dev/sda to dev/xbda. In these cases, EPIC will 
attempt to discern the naming scheme and will then use the 
names and will return an error if this detection fails.

• AWS allows a maximum of 26 block devices (/dev/sda, 
/dev/sdb, etc.) to be created and attached to a EC2 
instance. EPIC already uses /dev/sda and /dev/sdb for 
node storage and tenant storage, meaning that each EC2 host 
can support up to 24 migratable containers.

AUTHORED BY ANTHONY HERNANDEZ -- (415)786-2081 -- anthony94122@outlook.com


	BlueData Storage Options
	This technical white paper describes the various storage options and means by which the BlueData EPIC platform makes datasets available to containerized clusters for Hadoop, Spark, and other distributed Big Data platforms. It also describes how EPIC ...

	Table of Contents
	1. Data Storage Considerations
	Data Locality

	2. Local Data Storage
	Node Storage

	3. Remote Data Storage
	4. Tenant Storage for Local Data Access
	5. Comparing Data Access Modes
	6. Stateful Container Migration
	Use Cases
	Enabling Container Migration





