
REST API Guide
AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@
NX500 Controller
VX1048 Switch
VX3048 Switch
outlook.com

Notice
Vello believes the information in this publication is accurate as of its
publication date. However, the information is subject to change with-
out notice. THE INFORMATION IN THIS PUBLICATION IS PROVIDED
“AS IS.” VELLO MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICA-
TION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Vello software described in this
publication requires an applicable software license.

For the most up-to-date regulatory document for your product line,
please refer to your specific agreements or contact Vello Technical Sup-
port at support@vellosystems.com.

The information in this document is subject to change. This manual is
believed to be complete and accurate at the time of publication and no
responsibility is assumed for any errors that may appear. In no event
shall Vello Systems be liable for incidental or consequential damages in
connection with or arising from the use of the manual and its accompa-
nying related materials.

Copyrights and Trademarks
Published June, 2013. Printed in the United States of America.
Copyright 2013 by Vello Systems™. All rights reserved. This book or
parts thereof may not be reproduced in any form without the written
permission of the publishers.

Vello Systems, VellOS, Vello Systems NX500, Vello Systems VX1048, and
Vello Systems VX3048, are trademarks of Vello Systems, Inc. Please

review the Vello Corporation Trademarks at http://www.vellosys-
tems.com for additional/updated product name and trademark infor-
mation. All other trademarks are the property of their respective
owners.

Contact Information
Vello Systems, Inc.
1530 O’Brien Drive
Menlo Park, CA 94025

Phone: 650-324-7600
Fax: 650-324-7601
Toll-free: 1-866-MY-GIGES (1-866-694-4437)

Email: support@vellosystems.com

Website: www.vellosystems.com

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
ii © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

Table of Contents

1: Getting Started .. 1
API Overview ..2
About RESTful APIs .. 2
About the Vello REST API ..5
Vello REST API System Requirements ... 5
Accessing the Vello REST API ... 6
About This Manual ..7
Formatting Conventions ... 7
Organization .. 8
Additional Information ...9
Related Documentation .. 9
Contact Information .. 9

2: Vello REST API Structure 11
Definitions ... 12

Software Defined Network ..12
Node ..12
Flow ..12
Unicast Flow ..12
Multicast Flow ..13
Path ..14

Components and Capabilities ... 15
Flow Computation ...15
Topology Discovery ...15
Communications ..16

Statistics and Reporting ...16
REST API Methods ...19

3: NX500 Configuration....................................... 21
Accessing the REST API ...22
Default NX500 Controller Settings ...22
UBM Notes ..22

4: Vello REST API Methods 23
About the Vello REST API Methods 24
API Descriptions ..24
Node REST APIs ...25
Node ...25
Node Names ...26
Node Statistics ...26
Flow REST APIs ..27
Flow ...27
Flow Names ..28
Flow Destination ..28
Flow Statistics ..29
Flow Status ...29
Flow Connection ..30

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
iii© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

Table of Contents
Topology/Device REST APIs ... 31
NX500 Controller IP Configuration .. 31
Switch .. 32
Switch Names .. 32
Switch Ports ... 33
Switch Connection .. 33
Switch Port Statistics .. 34
REST API Error Codes .. 35

5: JSON.. 37
JSON Schema ... 38
JSON Common Objects ... 39
IP Address ... 39
IP Mask ... 39
Switch Name ... 39
Port Number .. 40
Switch Port Name .. 40
Name .. 40
Name Array .. 40
Name List .. 40
Port Array .. 41
JSON Node Items ... 42
Node Element ... 42
Node Status ... 42
Create Node Object .. 42
Node Object ... 43
Node Object Array ... 43
List Node Objects ... 43
Query Node .. 44

Node Statistics .. 44
JSON Flow Objects .. 45
Direction ... 45
Bandwidth .. 45
Hop Count .. 45
Flow Status ... 46
Create Flow .. 46
Flow Object .. 46
Flow Object Array .. 47
Flow Object List .. 47
Flow Statistics ... 48
Physical Path (Switch) .. 48
Physical Path (Switch Array) ... 48
Physical Path .. 49
Physical Path Array .. 49
Flow Connection .. 49
Path Connection Array ... 49
All Path Connections .. 50
Path Destination Status ... 50
Path Destination Status Array ... 50
Path Status ... 50
JSON Topology/Device Objects 51
Configure SFLOW .. 51
Port Type ... 51
Port State .. 51
Port MAC Address .. 52
Device Type ... 52
Switch Link ... 52
Switch Link Array ... 53

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
iv © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

Switch Inventory ...53
Switch ...53
Switch Array ...54
Switch Connection ..54
Switch Connection Array ...54
All Switch Connections ..54
Switch Port ..55
Switch Ports ..55
Switch Ports Array ..55
List Switch Ports ..56
Switch Port Statistics ...56
IP Configuration Mode ...57
IP Configuration ..57

6: cURL Examples ... 59
Accessing cURL ... 60
Windows ..60
Mac OSX ...60
Linux/Ununtu ..60
cURL Node Examples .. 61
Creating Nodes ...61
Get Node Information ..61
Delete a Node ..61
Get All Nodes ...61
Create a Flow ...62
Create a Flow Destination ...62
Configure Static Refresh Rate ..62
Configure NX500 Management IP ...62

7: Python Scripts .. 63
Using Python with the Vello REST API64
Node Operations ..64

Add Node ...64
Show Single Node ..65
List All Nodes ..65
Delete Single Node ...66
Delete All Nodes ..66

Flow Operations ...66
Add a Flow ...66
Add Multicast Destination Node ...67
Display Flow Status ..67
Display Flow Trace ..67
Show a Flow ..68
List all Flows ..69
List Switches ...69
Delete a Flow ..70
Delete Multicast Destination Node from a Flow70
Delete all Flows ..70

Statistics ...70
Enable/Disable Flow Statistics ...71
Show Port Statistics ..71
Show Flow Statistics ..71
Show Node Statistics ...72

Sample Python Scripts ..73
common.py ..73
path_stats.py ...73

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
v© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

Table of Contents
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
vi © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

1: Getting Started
1© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
API Overview

An application programming interface (API) is a protocol that allows
software components to communicate with each other. A protocol
often includes a library of specifications for routines, data structures,
object classes, and variables. Libraries can take many forms, including
online resources, sample code, or even hardcopy manuals.

APIs that enable web communication may be either server-side or cli-
ent-side.

• Server-side APIs reside within web servers to provide program-
matic interfaces to defined request-response message systems (cli-
ents). These interfaces are typically expressed in JSON or Extensible
Markup Language (XML), and are exposed via the web (most com-
monly via HTTP-based web servers).

• Client-side APIs reside within web browsers.

About RESTful APIs
REpresentational State Transfer (REST) is a software architectural design
style for creating interfaces between distributed systems that is widely
used in web API design. Styles and protocols include defined con-
straints (requirements); however, styles give users the freedom to meet
those requirements in any way they choose. End users experience REST
APIs as they browse the web as follows:

1. A user’s browser provides access to a network of web pages (virtual
state-machines). One can think of each page as a state within an
application.

2. Clicking a link (state transition) within an application causes the
next page (next application state) to transfer to the user and render
for use.

3. A global identifier (such as a Uniform Resource Identifier, or URI)
references each resource of specific information that resides on a
server.

4. Network components communicate via a standardized interface
(such as HTTP), and exchange representations of these resources, in
order to interact with and manipulate these resources.

REST is essentially a method for bringing together and applying many
existing, defined, and recognized software standards to create efficient,
scalable, and secure software solutions to integrate information
exchange across distributed systems. A RESTful software implementa-
tion is one that follows the REST method. A RESTful web API (also called
a RESTful web service) is a web API that is coded according to the REST
design style and implemented using HTTP methods.

A web application with a RESTful web API needs to know only the fol-
lowing to interact with a resource:

• Required URI

• Required action (HTTP method)

Note: Web applications that use multiple web API protocols
are called mashups.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
2 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

1: Getting Started
• Format (representation) of returned information (such as an HTML,
XML, or JSON document, an image, plain text, or any other content)

The application need not know whether caches, proxies, gateways, fire-
walls, tunnels, or anything else exist between it and the server that
actually holds the information.

REST defines six complementary design constraints:

• Separation: Servers house data and/or shared applications, but do
not store methods to display data. Clients contain the display
methods and applications needed to view and interact with the
data provided by the servers. Separating data storage from data
display facilitates scalability and extensibility on both sides. Clients
and servers communicate via APIs.

• Statelessness: A server need neither know nor store (“remember”)
the client state. Each call (state transition) from a client carries all of
the information needed for the server to provide the client with
data that match the requested new state. For example, a web server
need not track what individual web page each user is currently on;
it need only provide the next web page requested by each user as
they trigger calls by clicking hyperlinks. The server is thus stateless
and free of a potentially huge computing burden.

• Caches: Clients may cache (store) designated data received from
servers, thus improving network and server performance by reduc-
ing the number of data calls to the server. The risk of caching is that
data may become obsolete while the client is still using it. A well-
designed, well-managed data schema can mitigate this risk.

• Layers: Clients need not know the network structure lying
between them and the server. Different servers may provided dif-
ferent portions of the requested data, and other devices may pro-

vide additional functions, such as load-balancing, routing, or
security.

• Executables (optional): A server may supply an application and/or
executable code along with the data being returning the client.
This additional functionality is usually temporary, with the execut-
able being removed when the user session reaches some closing
point.

• Uniformity: A uniform interface allows network data to transfer
using a standard format. REST uses four fundamental principles for
creating uniform client/server interfaces:

- Resource identification: Each data source must have a unique
identifier, such as a URI. A resource that receives a call for data
returns a representation of the requested data. For example,
assume that a user clicks a link to look at a table that contains
listings drawn from several databases at once. In this example,
each named piece of data has a URI. The server(s) storing that
URI send only the HTML representations of the exact data
needed to fulfill the request; they do not send the entire data-
base, nor do they render the table the user is viewing.

- Resource manipulation: A client receives data-handling per-
missions (such as search, read, edit, and delete) from the server
along with the data. This allows a user with the appropriate
permissions to interact with and change the data being stored
on the source server(s). REST requires permissions to accom-
pany the data, but does not define how those permissions
must be handled.

- Self-descriptive messages: Data for each state change
includes metadata that instructs the client how to display that
data.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
3© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
- Hyperlink-driven client state changes: The client is aware of
the hyperlinks currently available to the user on their current
display, but is unaware of the actions that occur if the user
clicks one of those links. The client only becomes aware of the
results of a state change upon receiving return data from the
server.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
4 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

1: Getting Started
About the Vello REST API

The OpenFlow-enabled NX500 Controller from Vello Systems, Inc. is
deployed with a single image that consists of the Linux operating sys-
tem with several custom-built user-space applications that form a plat-
form for programmatic network control. This platform has three
externally-facing interfaces that each offer a particular set of interac-
tions and operations with some overlap:

• Command Line Interface (CLI): Custom console that uses a
restricted command set. This interface allows initial device bring-
up and configuration, root access, and recovery.

• Unified Bandwidth Manager (UBM): HTTPS graphical user inter-
face. This interface provides an efficient, intuitive way for network
administrators to perform routine tasks, such as defining packet
flow policies and monitoring packet traffic. UBM leverages the REST
API.

• RESTful Web API (REST API): Accessed via HTTPS. This interface
allows the creation of custom networking solutions beyond CLI and
UBM capabilities, such as setting the NX500 Controller IP address.
You may also perform routine CLI- and UBM-accessible tasks, such
as defining flow policies.

Vello REST API System Requirements
The Vello REST API comes pre-enabled on the NX500 Controller. The
minimum system requirements for running the API are the same as the
requirements for running the UBM.

The computer used to access UBM must meet the following minimum
requirements in order function as an effective NX500 Controller client:

• Operating System: Windows 7 or 8

• Browser: Firefox 18.0 to 20.0; Chrome 24.0 to 26.0; or Internet
Explorer 9 or 10

• Minimum resolution: 1024x768

In addition, the NX500 Controller must be:

• Powered on

• Network-accessible by the computer being used to access the REST
API

• Configured with at least one Vello VX1048/VX3048 switch that is in
Active status.

See the User Guide for bring-up, connection, and configuration instruc-
tions.

Note: Refer to the User Guide for complete CLI and UBM
instructions.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
5© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Accessing the Vello REST API
To access the Vello REST API:

Verify that the system being used for access meets all of the system
requirements described in the previous section.

1. Open a web browser and navigate to https://<A.B.C.D>/,
where <A.B.C.D> is the Management IP address of the NX500
Controller.

2. The NX500 Controller redirects the browser to the Web services
page.

3. Enter your user name in the Login field (case sensitive). The default
user name is admin.

4. Enter your password in the Password field (case sensitive). The
default password is vello123.

5. After logging in, navigate to http://<A.B.C.D>/rest/
v1.0/switch, where <A.B.C.D> is the Management IP address
of the NX500 Controller.

The system will respond with a message similar to the following:

{"items":[{"id":"SW0000B0D2F5052087","inven-
tory":{"hostname":"SW0000B0D2F5052087","data-
plane-id":"0x0000b0d2f5052087","description-
mfr":"Vello Systems, Inc, 1530 Obrien Dr, Menlo
Park, CA 94025.","description-
hw":"VX3048","description-sw":"Jun 5 2013

11:15:00","description-dataplane":"","serial-
num":"1234567890123456"},"ip-con-
fig":{"mode":"static","ip-
addr":"172.18.254.155","sub-
net":"0.0.0.0","gateway":"0.0.0.0"}

Note: Remember that user authentication is identical for the
UMB and API; a user with access to one has access to the
other.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
6 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

1: Getting Started
About This Manual

This section describes the formatting conventions and information
contained in this manual.

Formatting Conventions
This manual uses several formatting conventions to present informa-
tion of special importance.

Lists of items, points to consider, or procedures that do not need to be
performed in a specific order appear in bullet format:

• Item 1

• Item 2

Procedures that must be followed in a specific order appear in num-
bered steps:

1. Perform this step first.

2. Perform this step second.

Specific keyboard keys are depicted in square brackets and are capital-
ized, for example: [ESC]. If more than one key should be pressed simul-
taneously, the notation will appear as [KEY1]+[KEY 2], for example
[ALT]+[F4].

Interface elements such as document titles, fields, windows, tabs, but-
tons, commands, options, and icons appear in bold text.

Menus and submenus have the notation Menu>Submenu. For exam-
ple, “Select File>Save” means that you should first open the File menu,
and then select the Save option.

Specific commands appear in standard Courier font. Sequences of
commands appear in the order in which you should execute them and
include horizontal or vertical spaces between commands. The follow-
ing additional formatting also applies when discussing Command Line
Interface (CLI), cURL, and Python commands:

• Actual commands appear in plain Courier font. Type these com-
mands as shown.

• CLI responses from the system appear in bold Courier font.

• Optional values appear in square brackets, such as [value]. Do
not include the brackets when adding an optional value to a com-
mand. If there is more than one optional value, you will see a verti-
cal pipe between individual choices (such as [yes|no]). You may
select either none or one of the optional values.

• Variable values appear inside carets, such as <severity>. In this
case, replace the variable with a specific value from the list of avail-
able options for that variable. Do not include the carets when
entering the value.

• Mandatory inputs where you must select one of two or more spe-
cific values appear in carets with a vertical pipe between individual
options (such as <tcp|ssl>). In these cases, you must select one
of the values when entering the command.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
7© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
• Number ranges appear inside carets, such as <1-10>. In this exam-
ple, you may input any number from 1-10. Do not include the carets
when entering the value.

This manual also contains important safety information and instruc-
tions in specially formatted callouts with accompanying graphic sym-
bols. These callouts and their symbols appear as follows throughout
the manual:

Organization
This manual contains the following chapters:

• 1 - Getting Started: Introduces APIs at a high level and outlines the
conventions and formatting used in this manual. It also includes
contact information for Vello Systems, Inc.

• 2 - REST API Structure: Provides a high-level overview of the REST
API (see <xref>).

• 3 - NX500 Configuration: Describes using the REST API to config-
ure the NX500 Controller (see <xref>).

• 4 - JSON: Lists the JSON elements for working with nodes, flows,
and the network topology (see <xref>).

• 5 - cURL: Contains sample cURL scripts. You may use cURL scripts to
make REST API calls by providing basic parameters derived from
the httplib and json libraries (see <xref>)

• 6 - Python: Contains sample Python scripts. You may use Python
scripts to make REST API calls by providing basic parameters
derived from the httplib and json libraries (see <xref>).

CAUTION: CAUTIONS ALERT YOU TO THE POSSIBILITY OF
EQUIPMENT DAMAGE AND/OR PERSONAL INJURY IF
THESE INSTRUCTIONS ARE NOT FOLLOWED.

Note: Notes provide helpful information.

Note: Detailed httplib and JSON instructions are beyond the
scope of this manual, as are cURL and Python programming
instructions.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
8 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

1: Getting Started
Additional Information

This section lists related documentation and provides information on
contacting Vello Systems, Inc.

Related Documentation
Please refer to the following documents for additional information:

• Hardware Specification: This manual contains detailed specifica-
tions for the Vello NX500 Controller and the VX1048 and VX3048
switches. It also lists the Field Replaceable Units (FRUs) for each
device and provides ordering information.

• User Guide: This manual describes installing, bringing up, and con-
figuring the Vello NX500 Controller and VX1048/VX3048 switches.
It also covers the CLI, UBM, and troubleshooting.

Contact Information
You may contact Vello Systems, Inc. at the following addresses/phone
numbers:

Corporate Headquarters
1530 O’Brien DR
Menlo Park, CA 94025
T. +1 650-324-7600
USA

United Kingdom
66 Chiltern STT
London W1U 4JT
T. +44 (0) 7885725192

Germany
Forstring 96
63225 Langen
T. +49 6103 5095225

Please see the User Guide for information about how to obtain support
and warranty service.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
9© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
10 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

2: Vello REST API Structure
11© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
Definitions

This section defines some basic terms that are used throughout this
manual.

Software Defined Network
A software-defined network (SDN) uses software to decouple network
control from hardware in favor of a software application called a con-
troller. This provides much greater flexibility and control at a much
lower cost than traditional hardware-based methods.

Node
A node is a port on a VX1048 or VX3048 switch. It may also specify
either a single IP address (such as a PC) or a range of IP addresses that
represent a subnet that is allowed into and/or out of that port. Thus, a
node can be defined by either:

• A combination of IP address/netmask of a host/network and a
physical VX port through which the host/network can be reached.

• A VX switch port only. This represents any network entities that can
be reached through the VX port regardless of Layer 2 or Layer 3
addressing.

Flow
A flow is a logical network route through the SDN, between nodes. The
act of defining a flow means that traffic is both permitted and expected
to flow between the nodes. The NX500 Controller automatically com-
putes the individual physical ports and switch links through the SDN
that are required to create the flow, and programs the VX1048 and/or

VX3048 switch(es) appropriately. A flow may have the following prop-
erties:

• Direction: A flow may be unidirectional (one way) or bidirectional
(both ways) between a pair of nodes.

• Bandwidth: All flows require reserved (guaranteed) bandwidth. If
the user does not supply a value, the bandwidth reservation will
default to the node port speed. This bandwidth is reserved
throughout all of the physical links that comprise the flow. The flow
cannot be created if the specified bandwidth is unavailable.

When creating a flow, the NX500 Controller updates the network
topology with new bandwidth reservations to ensure that future
flows will not impinge on the bandwidth reserved for that flow.
Removing a flow frees up the reserved bandwidth for use by other
flows.

• Unicast or Multicast: See the following sections.

Unicast Flow
A unicast flow is a connection between two specific nodes. Data pack-
ets received on a single source node flow to a single destination node.
You may further filter allowable traffic for a flow by defining the IP
address and netmask of the ingress and egress nodes attached to the

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
12 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

2: Vello REST API Structure
VX1048/VX3048 ports. Unicast flows may be either unidirectional or
bidirectional.

Figure 2.1: Unicast flows example

Multicast Flow
A multicast flow exists when a single source node forwards data to mul-
tiple destination nodes. The source node for a multicast flow does not
use a multicast IP address; however, if a flow’s destination node uses a
multicast IP address, then the flow may have additional destination
nodes (listener nodes) attached to it. Each additional listener node
shares a common multicast IP address, called the multicast group IP
address. Multicast flows must be unidirectional.

To create a multicast flow:

1. Define a node as the multicast source, including the switch, port,
and unicast IP address.

2. Define a node as the multicast listener, including the switch, port,
and the IP address of the multicast group.

3. Create a unidirectional flow from the multicast source to the multi-
cast listener.

4. Add additional destinations to the flow that you just created.

Creating this multicast flow returns a flow ID. You may now add
more multicast listeners to the same flow by creating a new multi-
cast listener node. Each multicast flow uses a single bandwidth
when delivering information to listeners; you may not specify
bandwidth on a per-listener basis.

5. Use the REST API flow-target URI (see <xref>) to add the listener
node to the multicast flow using the flow ID and a node ID.

Figure 2.2: Multicast flow example

Note: You can use the same flow ID and node ID to remove a
multicast listener.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
13© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Path
A path is the actual physical route that flows traverse through switches.
a path is defined by two aspects:

• Switch ID and data ingress port ID (the physical port through which
the data entered the switch)

• Switch ID and data egress port ID (the physical port through which
the data exited the switch).

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
14 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

2: Vello REST API Structure
Components and Capabilities

The Vello REST API interacts with the Vello OpenFlow SDN in terms of
nodes and flows to:

• configure node policies,

• configure flow policies, and

• inspect the network topology (physical state).

You may also use the REST API to set the NX500 Controller Manage-
ment IP address and whether that IP address is static or operates under
Dynamic Host Configuration Protocol (DHCP). A static management IP
addresses requires the following:

• Management IP address

• Netmask

• Default gateway

The NX500 Controller will use defaults for these values if you set the
management IP address to DHCP (see <xref>).

You may set the NX500 Controlplane IP address (address of the ports
used to manage VX1048 and/or VX3048 switches) using either the REST
API or the CLI.

Flow Computation
The Vello flow computation algorithm computes flows based on the
following priorities:

1. Select flows that satisfy the specified bandwidth requirements.

2. Select flows with the lowest number of hops that satisfy the speci-
fied bandwidth requirements.

3. Avoid duplication of packets, provided that the preceding two cri-
teria are satisfied.

Topology Discovery
Topology discovery refers to the ability of the NX500 Controller to dis-
cover all of the switches in the network and the connections between
neighboring switches for the purpose of flow computation. The follow-
ing events trigger topology discovery:

• New VX switch: The NX500 Controller automatically discovers all of
the neighbors and the network links between the neighbors when
a new VX1048/VX3048 switch connects.

Note: The number of hops equals the number of switches the
data traverses on the way from the source node to the desti-
nation node.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
15© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
• VX switch port transitions to the “UP” state: When a switch port
enters the “UP” state, the NX500 Controller determines whether the
port is connected to a neighboring switch and discovers the neigh-
boring switch port.

• VX port transitions to the “DOWN” state: When a switch port
moves to the “DOWN” state, the NX500 Controller automatically
removes any switch link to a neighboring VX1048/VX3048.

• VX disconnects from NX500 Controller: The NX500 Controller
determines that a switch is disconnected from the management
network if:

- the (TCP/TLS) connection to the controller from the switch is
reset or closed, or

- the switch fails to respond to an OpenFlow echo request gener-
ated by the NX500 Controller.

The NX500 Controller initiates an OpenFlow echo request after 60
seconds without a message from the VX switch. The NX500 Con-
troller considers that management connection disconnected if no
reply comes within 60 seconds and removes the affected switch
from the network topology. See the User Guide for troubleshooting
information.

Communications
The following diagram illustrates how REST API components communi-
cate among each other.

Figure 2.3: Communications between REST API components

Statistics and Reporting
Node and flow statistics are available for the logical network. Port sta-
tistics describe the physical network. Obtaining these statistics can be
done via pull or push, as follows:

• Pull: You may query the NX500 Controller for statistics using the
REST API.

• Push: You can configure the NX500 Controller to automatically
send statistics to the management network using SFLOW.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
16 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

2: Vello REST API Structure
Type Fields Default Behavior

Flow Stats

Statistics related to traffic on a logical flow

• Total number of packets

• Total number of bytes

• Packets per second averaged over the con-
figured interval

• Bytes per second averaged over the config-
ured interval

Flow stats are enabled by default, with a default
interval of 10 seconds (see <xref>).

Node Stats

Statistics related to a logical node. This is an
aggregation of all flows that a node participates
in.

• Total number of packets

• Total number of bytes

• Packets per second averaged over the con-
figured interval

• Bytes per second averaged over the config-
ured interval

Node stats are enabled by default, with a default
interval of 10 seconds (see <xref>).

Port Stats

Ports Stats are per physical switch port

• Number of received packets

• Number of transmitted packets

• Number of received bytes

• Number of transmitted bytes

• Number of received packets per second
averaged over the configured interval

Node stats are enabled by default, with a default
interval of 30 seconds (see <xref>).

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
17© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Table 2.1: Supported statistics

• Number of transmitted packets per second
averaged over the configured interval

• Number of received bytes per sec averaged
over the configured interval

• Number of transmitted bytes per sec aver-
aged over the configured interval

• Number of packets dropped by Rx

• Number of packets dropped by Tx

• Number of received errors

• Number of collisions

• Number of transmitted errors
• Number of frame alignment errors

• Number of packets with Rx overrun

• Number of CRC errors

Type Fields Default Behavior

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
18 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

2: Vello REST API Structure
REST API Methods

The Vello REST API uses GET, PUT, and DELETE methods as shown below.

Table 2.2: Vello REST API methods

Resource URI GET Method PUT Method DELETE Method

A URI for a collection of data looks like this:

http://example.com/resources/

List the URIs and perhaps
other details of the collec-
tion's members.

The collection in this exam-
ple is called “resources”.

Replace the entire collection
with another collection.

Delete the entire collection.

A URI for an individual element looks like this:

http://example.com/resources/item17

Retrieve a representation of
the addressed member of
the collection, expressed in
an appropriate Internet
media type.

In this example, the collec-
tion is called “resources”, and
the addressed member in
the collection is “item 17”

Replace the addressed mem-
ber of the collection, or cre-
ate it if it doesn't exist..

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
19© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
20 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

3: NX500 Configuration
21© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
Accessing the REST API

You may read the NX500 Controller device configuration parameters
using the REST API. Access the REST API using the IP address of the
NX500 Controller and the REST Interface port. The basic syntax is:

https://<A.B.C.D>/<URI>

Where:

• <A.B.C.D> is the IP address of the NX500 Controller. By default,
this is 192.168.1.1.

• <URI> is the URI to use. For example, to retrieve the NX 500 Con-
troller IP configuration using cURL, enter the following on a com-
mand line prompt:

curl -k -u admin:vello123 https://192.168.1.1/
rest/v1.0/controller-config-ip/control-
plane{"mode":"static","ip-
addr":"192.168.1.1","sub-
net":"255.255.255.0","gateway":"0.0.0.0"}

See <xref> for a complete list of NX500 Controller cURL commands.

Default NX500 Controller Settings
The NX500 Controller shipped with the following default settings:

Table 3.1: NX500 Controller default settings

UBM Notes
UBM runs on the NX500 Controller and acts as a buffer between users
and the REST API interface to handle client authentication and forward
RESTful web API requests to the local REST server on your behalf.

UBM uses security files that exist on the NX500 Controller to establish
secure HTTPS connections between clients and itself. These files are
loaded during the manufacturing process to establish secure TLS con-
nections to external entities, such as Vello VX1048/VX3048 switches
and REST API clients.Configuration Setting

Hostname nvc
Date/Time Unspecified

Logging • Remote logging disabled

• Set to “Information” (see the User Guide)
Configuration Setting
Management IP DHCP
Controlplane IP 192.168.1.1
HTTPS Access Port 443
Username (case sensi-
tive)

admin

Password (case sensit-
vite)

vello123

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
22 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
23© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
About the Vello REST API Methods

The Vello REST API is divided into three parts:

• Node: Together with the Flow APIs, these APIs define the logical
network view.

• Flow: Together with the Node APIs, these APIs define the logical
network view.

• Topology/Device: These APIs define the physical network view.

These APIs use a ‘JSON Schema (see <xref>) as the format for passing
messages between an application and the API.

API Descriptions
The API descriptions in this chapter use the following notation to
explain each URI. The last column of each description table identifies a
message format and whether that message is sent to the API by the
application or is received by the application as a reply from the API. The
message may also contain one or more error(s), which are listed by
number and explained in “REST API Error Codes” on page 35.

Table 4.1: REST API command listing example

Where: <identifier> is the specific ID of the flow, node, switch, etc.

/relevant-uri-part

HTTP Method Type
(GET, PUT, or DELETE)

~additional/uri/flow/with/:
<identifier>

Operation description. • Send: JSON schema name that
describes the data sent to the
server

• Reply: JSON schema name that
describes the data received
from the server

• Error code(s): Listed as applica-
ble

Example URI: /rest/v1.0/relevant/uri/part/additional/uri/flow/with/<identifier>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
24 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
Node REST APIs

A node is a logical collection of physical switch-ports that reside at the
edge of a software defined network. Nodes can:

• have node-properties attached to them,

• provide statistics, and

• describe a flow end point.

Node
The node API allows you to add, edit, get, list, or delete one or more
node objects. To use this API:

Where: <node ID> is the ID of the desired node.

/node

DELETE ~/:<node ID> Delete a node object. Possible error(s): 52, 102

GET ~ Get a list of all node objects. Reply: <id:node-obj-list>

GET ~/:<node ID> Get a node object. • Reply: <id:node-obj>

• Possible error(s): 52, 102

PUT ~/:<node ID> Create or modify a node object. • Send: <id:node-obj-cre-
ate>

• Possible error(s): 51, 52, 53,
104

Example URI: /rest/v1.0/node/<node ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
25© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Node Names
The node names API allows you to obtain a list of all node names. To
use this API:

Node Statistics
The node stats API allows you to obtain statistics for the specified
node. To use this API:

Where: <node ID> is the ID of the desired node.

/node-names

GET ~ Get a list of all node names. Reply: <id:name-list>

Example URI: /rest/v1.0/node-names

/node-stats

GET ~/:<node ID> Get statistics for the specified node. • Reply: <id:node-stats>

• Possible error(s): 52, 102

Example URI: /rest/v1.0/node-stats/my-node

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
26 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
Flow REST APIs

A flow describes a connection between nodes. Data may flow between
connected nodes, depending on the specified flow-property (policy
rule). A unicast flow may have either unidirectional or bidirectional
packet traffic. A multicast flow must have unidirectional packet traffic.

Flow
The flow API allows you to add, edit, get, list, or delete one or more flow
objects. To use this API:

Where: <flow ID> is the ID of the desired flow.

/flow

DELETE ~/:<flow ID> Delete a flow object. Possible errors: 52, 101

GET ~ Get a list of all flow objects. Reply: <id:flow-obj-list>

GET ~/:<flow ID> Get a flow object. • Reply: <id:flow-obj>

• Possible errors: 52, 101

PUT ~/:<flow ID> Create or modify a flow object. • Send: <id:flow-obj-cre-
ate>

• Possible errors: 51, 52, 53, 103,
105, 106

Example URI: /rest/v1.0/node/<flow ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
27© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Flow Names
The flow names API allows you to obtain a list of all flow names. To use
this API:

Flow Destination
The flow destination API allows you to add or remove multicast target
nodes. To use this API:

Where:

• <node ID> is the ID of the desired node.

• <flow ID> is the ID of the desired flow.

• <listener ID> is the ID of the multicast listener.

/flow-names

GET ~ Get a list of all flow names. Reply: <id:name-list>

Example URI: /rest/v1.0/flow-names

/flow-destination

DELETE ~/:<flow ID>/:node ID Remove a multicast target node
from a flow.

Possible errors: 53, 101, 102, 150

PUT ~/:<flow ID>/:<node ID> Add a multicast target node to a
flow. The node must have the same
IP address as the other targets in the
flow, and the flow must be a multi-
cast flow.

Possible errors: 53, 101, 102, 150

Example URI: /rest/v1.0/flow-destination/<flow ID>/<listener ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
28 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
Flow Statistics
The flow stats API allows you to obtain statistics for the specified flow.
To use this API:

Where: <flow ID> is the ID of the desired flow.

Flow Status
The flow status API allows you to obtain the current status of the spec-
ified flow. To use this API:

Where: <flow ID> is the ID of the desired flow.

/flow-stats

GET ~/:<flow ID> Get statistics for the specified flow. • Reply: <id:flow-stats>

• Possible error(s): 52, 101, 200,
251

PUT ~/refresh/:time/:<flow ID> Set the sampling time for flow sta-
tistics for the specified flow.

Possible errors: 52, 101, 301

Example URI: /rest/v1.0/flow-stats/refresh/8/<flow ID>

/flow-stats

GET ~/:<flow ID> Get the current status of the speci-
fied flow.

• Reply: <id:path-stats-
obj>

• Possible errors: 52, 101, 200,
251

Example URI: /rest/v1.0/flow-status/<flow ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
29© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Flow Connection
The flow connection API allows you to obtain connection information
for the specified flow(s). To use this API:

Where: <flow ID> is the ID of the desired flow.

/flow-connection

GET ~ Get connection information for all
flows.

Reply: <id:path-conn-all>

GET ~/:<flow ID> Get connection information for the
specified flow only.

• Reply: <id:path-conn>

• Possible error: 100

Example URIs: • /rest/v1.0/flow-connection

• /rest/v1.0/flow-connection/<flow ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
30 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
Topology/Device REST APIs

The topology/device APIs help you manage your physical network by
providing information about the network and your ability to configure
it. These APIs allow you to configure the NX500 Controller, obtain
switch and port information, and configure SFLOW.

NX500 Controller IP Configuration
The controller config ip API allows you to query or configure the Man-
agement and Controlplane interfaces of the NX500 Controller. To use
this API:

/controller-config-ip

GET ~/:management Get the Management interface con-
figuration of the NX500 Controller.

Reply: <id:config-ip>

GET ~/:control-plane Get the Controlplane interface con-
figuration of the NX500 Controller.

Reply: <id:config-ip>

PUT ~/:management Set the Management interface con-
figuration of the NX500 Controller.

• Send: <id:config-ip>

• Possible errors: 51, 53, 400

PUT ~/:control-plane Set the Controlplane interface con-
figuration of the NX500 Controller.

• Send: <id:config-ip>

• Possible errors: 51, 53, 400

Example URI: /rest/v1.0/controller-config-ip/management

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
31© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Switch
The switch API allows you to query the configuration of one or more
VX1048/VX3048 switches. To use this API:

Switch Names
The switch names API allows you to obtain a list of all switch names. To
use this API:

/switch

GET ~ Get configuration information for all
switches.

Reply: <id:switch-array>

GET ~/sw Get configuration information for
the specified switch.

Send: <id:switch>

Example URI: /rest/v1.0/switch

/switch-names

GET ~ Get a list of switch names. Reply: <id:name-list>

Example URI: /rest/v1.0/switch-names

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
32 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
Switch Ports
The switch names API allows you to list all ports on either a specified
switch or all switches. To use this API:

Where: <switch ID> is the ID of the desired switch.

Switch Connection
The switch connection API allows you to list all connections on either a
specified switch or all switches. To use this API:

Where: <switch ID> is the ID of the desired switch.

/switch-ports

GET ~ Get all ports for all switches. Reply: <id:name-list>

GET ~/sw: Get all ports for the specified switch. • Reply: <id:name-list>

• Possible error: 100

Example URIs: • /rest/v1.0/switch-ports

• /rest/v1.0/switch-ports/<switch ID>

/switch-connection

GET ~ Get all connections for all switches. Reply: <id:switch-conn-all>

GET ~/sw: Get all connections for the specified
switch.

• Reply: <id:switch-conn>

• Possible error: 100

Example URIs: • /rest/v1.0/switch-connection

• /rest/v1.0/switch-connection/<switch ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
33© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Switch Port Statistics
The switch port stats API allows you to get statistics for the specified
switch port. To use this API:

Where:

• <switch ID> is the ID of the desired switch.

• <port ID> is the ID of the desired port.

/switch-port-stats

GET ~/:<switch ID>/:<port ID> Get statistics for the specified switch
port.

• Reply: <id:switch-port-
stats>

• Possible errors: 52, 200, 251

Example URIs: • /rest/v1.0/switch-port-stats/<switch ID>/<port ID>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
34 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

4: Vello REST API Methods
REST API Error Codes

The REST API returns an error listing when an application error occurs in
the REST interface. This listing consists of:

• Message body containing an error code

• Generic error message

• Auxiliary error message

For example:

{ “error-code”: 0, “error-message”: “No error”,
“error-auxiliary”: “This is just a test” }

The following table lists the possible error code values and provides a
brief description for each code..

Table 4.2: REST API error codes

Error code Description

0 No error occurred.

50 Invalid input was received.

51 An invalid input format was received.

52 An invalid identifier was received.

53 An invalid field value was received.

100 An entity did not exist.

101 A flow did not exist.

102 A node did not exist.

103 A flow-property did not exist.

104 A node-property did not exist.

105 A source node did not exist.

106 A target node did not exist.

107 Failed to change bandwidth.

150 An entity existed.

200 A resource was unavailable.

250 A generic read error occurred.

251 A bad read occurred.

300 A generic write error occurred.

301 A bad write occurred.

400 A generic failure occurred

Note: In addition to the errors described above, you may
encounter HTTP or other computing errors that are not asso-
ciated with the Vello REST API. Describing these errors is
beyond the scope of this manual. These error codes are stan-
dardized, and you may research them online.

Error code Description

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
35© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
36 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
37© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
JSON Schema

The JSON schema used by the Vello REST API describes the format of
JSON messages that are sent between the REST API and the applica-
tion. The schema itself is written in JSON and consists of an array of
schema objects. Each schema object describes the format for the
schema element that it identifies. An element can be any logical or
physical component of the network that you can modify programmati-
cally, such as:

• Node (that you can create, monitor, modify, and delete)

• Flow (that you can create, monitor, modify, and delete)

• Port (physical aspect of the network that can be monitored but nei-
ther created nor deleted)

The following table shows selected examples of JSON instances of
schema objects.

Table 5.1: JSON schema object examples

Schema Object (meta) JSON Instance (actual)

<id:name-list> { “items”: [“sw1”, “sw2”, “sw3”] }

<id:node-obj-create> {
“node-element”: [“sw1-p1”, “sw2-p22”]
“node-property-items”: [“my-node-prop”]
}

<id:flow-obj-create> {
“flow”: {
“source”:”node-a”,
”destinations”:[“node-b”]
},
“flow-property”: “my-flow-prop”
}

<id:flow-direction> “uni”

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
38 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
JSON Common Objects

The JSON common objects defined in this section serve as components
in the definitions of node, flow, and topology objects. These are the
simplest-defined JSON objects in the API that form part of the building
blocks for the more complex node, flow, and topology JSON object def-
initions described in:

• “JSON Schema” on page 38

• “JSON Node Items” on page 42

• “JSON Flow Objects” on page 45

• “JSON Topology/Device Objects” on page 51

IP Address
The ip-address JSON object describes an IPv4 IP address in the format
<A.B.C.D>.

{
“id”: “ip-address”,
“type”: “string”,
“format”: “IPv4”

}

IP Mask
The ip-mask JSON object describes a netmask in CIDR format. For
example, 192.168.100.0/24 represents the IP address
192.168.100.0 and its netmask of 255.255.255.0.

{
“id”: “ip-mask”,
“type”: “number”

}

Switch Name
The switch-name JSON object describes a unique switch ID.

{
“id”: “switch-name”,
“type”: “string”,
“format”: “Vello switch name”

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
39© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Port Number
The port-number JSON object is a positive integer that represents a
specific port on a switch.

{
“id”: “port-number”,
“type”: “integer”

}

Switch Port Name
The switch-port-name JSON object refers to a specific port on a spe-
cific switch, such as sw0001-p1 or sw0002-p5.

{
“id”: “switch-port-name”,
“type”: “string”

}

Name
The name JSON object refers to a generic name string. The string may
only contain alphanumeric characters (a-z, A-Z, 0-9), dashes (-), or
underscores (_) and may not exceed 255 characters in length.

{
“id”: “name”,
“type”: “string”

}

Name Array
The name-array JSON object refers to an array of names.

{
“id”: “name-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:name>]

}

Name List
The name-list JSON object provides a name for an array of names.

{
“id”: “name-list”,
“type”: “object”,
“properties”: {

“items”: <id:name-array>
}

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
40 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
Port Array
The port-array JSON object refers to an array of ports.

{
“id”: “port-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:port-number>]

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
41© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
JSON Node Items

These JSON objects are used for REST APIs that affect network nodes,
such as calls that create, modify, configure, or delete nodes.

Node Element
The node-element JSON object refers to an array of switch-port name
strings.

{
“id”: “node-element”,
“type”: “array”,
“minItems”: 1,
“maxItems”: 1,
“items”: [<id:switch-port-name>]

}

Node Status
The node-status JSON object refers to the current status of a node. The
possible statuses are:

• Available

• Unavailable

{
“id”: “node-status”,
“type”: “string”

}

Create Node Object
The node-obj-create JSON object creates or modifies a node with the
following properties:

• ID: unique ID for the node

• Node element: Switch-port name string

• Group name: Group name for the node

• IP address: IP address of the node

• IP Mask: Netmask of the node

• Description: Text describing the node

Multicasting is handled implicitly via the IP address. If the IP address is
in the set 224.0.0.0-239.255.255.255 and is not one of the reserved mul-
ticast IP-addresses (224.0.0.0, 224.0.0.1, 224.0.0.2, 224.0.0.13), then the
node is considered to be a multicast target node.

{
“id”: “node-obj-create”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“node-element”: <id:node-element>,

Note: You may use a null value for any of these fields except
“id” and “node-element”.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
42 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
“group-name”: <id:name>,
“ip-address”: <id:ip-address>,
“ip-mask”: <id:ip-mask>,
“description”: <string>

}
}

Node Object
The node-obj JSON object represents a node with the following infor-
mation and having the following properties:

• ID: unique ID for the node

• Node element: Switch-port name string

• Group name: Group name for the node

• IP address: IP address of the node

• IP Mask: Netmask of the node

• Description: Text describing the node

{
“id”: “node-obj”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“node-element”: <id:node-element>,
“group-name”: <id:name>,

“ip-address”: <id:ip-address>,
“ip-mask”: <id:ip-mask>,
“description”: <string>

}
}

Node Object Array
The node-obj-array JSON object refers to an array of nodes.

{
“id”: “node-obj-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:node-obj>]

}

List Node Objects
The node-obj-list JSON object provides a name for an array of nodes.

{
“id”: “node-obj-list”,
“type”: “object”,
“properties”: {

“items”: <id:node-obj-array>
}

}

Note: You may use a null value for any of these fields except
“id” and “node-element”.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
43© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Query Node
The node-query JSON object returns a list of node names that match
your specified criteria. You may either specify one or more criteria or
use one or more wildcard symbols (*) to return nodes with any value for
the selected criteria, as follows:

• For the “group-name” and “ip-address” fields, the wildcard
value is the string “”.

• For the “ip-mask” field, this value is -1.

You may also use a null to indicate a wildcard value.

{
“id”: “node-query”,
“type”: “object”,
“properties”: {

“group-name”: <id:name>*,
“ip-address”: <id:ip-address>*,
“ip-mask”: <id:ip-mask>*

}
}

Node Statistics
The node-stats JSON object is a list of the statistics for all of the flows
that the specified node participates in.

{
“id”: “node-stats”,
“type”: “object”,
“properties”: {

“items”: [<id:flow-stats>]
}

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
44 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
JSON Flow Objects

These JSON objects are used for REST APIs that affect network flows,
such as calls that create, modify, configure, or delete flows.

Direction
The flow-direction JSON object is a string describing the flow direc-
tion. Valid values are:

• uni: unidirectional flow.

• bi: bidirectional flow.

{
“id”: “flow-direction”,
“type”: “string”

}

Bandwidth
The bandwidth JSON object is a positive integer that defines the band-
width for a flow in kilobytes per second (kbps). The system rounds the
specified value to the nearest OpenFlow-supported value. OpenFlow
values are typically powers of 10.

{
“id”: “bandwidth”,
“type”: “integer”

}

Hop Count
The hop-count JSON object is a positive integer that specifies the max-
imum number of hops for a flow. Specifying a maximum hop count that
is too low for the physical network topology will cause the flow to fail.

{
“id”: “hop-count”,
“type”: “integer”

}

Note: A kilobyte is defined as 1,000 bytes and not 1,024.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
45© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Flow Status
The flow-status JSON object refers to the current status of a flow. The
possible statuses are:

• Available

• Unavailable

• Attempting

{
“id”: “flow-status”,
“type”: “string”

}

Create Flow
The flow-obj-create JSON object creates or modifies a flow with the
following properties:

• ID: unique ID for the flow

• Source: source node for the flow

• Destinations: Destination node(s) for the flow

• Flow direction: May be either uni (unidirectional) or bi (bidireci-
tonal)

• Description: Text describing the flow.

• Maximum bandwidth: Maximum bandwidth to reserve for this
flow, in kilobytes per second (kbps). A value of 0 or null disables
maximum bandwidth enforcement for this flow; the flow will be
created with the default node port speed.

• Maximum hop count: Maximum number of hops from source
node to destination node. Specifying a number that is too low for
the physical network topology will cause the flow to fail.

{
“id”: “flow-obj-create”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“source”: <id:name>,
“destinations”: <id:name-array>,
“flow-direction”: <id:path-direction>,
“description”: <string>,
“maximum-bandwidth”: <id:bandwidth>,
“maximum-hop-count”: <id:hop-count>

}
}

Flow Object
The flow-obj JSON object represents a flow with the following informa-
tion and having the following properties:

• ID: unique ID for the node

• Source: Source node for the flow

• Destination: Destination node for the flow

Note: You may use a null value for the “maximum-band-
width”, “description”, and “maximum-hop-
count” fields.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
46 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
• Flow direction: May be either uni (unidirectional) or bi (bidirec-
tional)

• Description: Text describing the flow.

• Maximum bandwidth: Maximum bandwidth to reserve for this
flow, in kilobytes per second (kbps). A value of 0 or null disables
maximum bandwidth enforcement for this flow.

• Maximum hop count: Maximum number of hops from source
node to destination node.

{
“id”: “flow-obj”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“source”: <id:name>,
“destinations”: <id:name-array>,
“flow-direction”: <id:flow-direction>,
“description”: <string>,
“maximum-bandwidth”: <id:bandwidth>,
“maximum- hop-count”: <id:hop-count>

}
}

Flow Object Array
The flow-obj-array JSON object refers to an array of flows.

{
“id”: “flow-obj-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:flow-obj>]

}

Flow Object List
The flow-obj-list JSON object provides a name for an array of nodes.

{
“id”: “flow-obj-list”,
“type”: “object”,
“properties”: {

“items”: <id:flow-obj-array>
}

}

Note: You may use a null value for any of these fields.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
47© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Flow Statistics
The flow-stats JSON object returns the following statistics for the spec-
ified flow:

• ID: Unique ID of the flow

• Bytes: Number of bytes handled by the flow

• Bytes per second: Speed of the flow in bytes per second

• Packets: Number of packets handled by the flow

• Packets per second: Speed of the flow in packets per second

• Interval: Duration in seconds

• Description: Text describing the flow

{
“id”: “flow-stats”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“bytes”: <number>,
“bytes-per-sec”: <number>,
“packets”: <number>,
“packets-per-sec”: <number>,
“interval”: <number>,
“description”: <string>

}
}

Physical Path (Switch)
The path-physical-switch JSON object lists the path each flow takes
from the source node to the destination node, as follows:

• Switch: Unique switch ID

• Ingress port: Port where flow data enters the specified switch

• Egress port: Port where flow data exits the specified switch

{
“id”: “path-physical-switch”,
“type”: “object”,
“properties”: {

“switch”: <id:name>,
“ingress-port”: <id:port-array>,
“egress-port”: <id:port-array>

}
}

Physical Path (Switch Array)
The path-physical-switch-array JSON object refers to an array of
path-physical-switch JSON objects.

{

“id”: “path-physical-switch-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:path-physical-switch>]

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
48 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
Physical Path
The path-physical JSON object refers to the number and names of the
switches a flow travels through on its way from source node to destina-
tion node.

{
“id”: “path-physical”,
“type”: “object”,
“properties”: {

“count”: <number>,
“path”: <id:path-physical-switch-

array>
}

}

Physical Path Array
The path-physical-array JSON object refers to an array of path-physi-
cal JSON objects.

{
“id”: “path-physical-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:path-physical>]

}

Flow Connection
The flow-conn JSON object describes an association between a path
and the physical representation of that path.

{
“id”: “flow-conn”,
“type”: “object”,
“properties”: {

“id”: <id:name>,
“physical-paths”: <id:path-physical-

array>
}

}

Path Connection Array
The path-conn-array JSON object refers to an array of path-conn
JSON objects.

{
“id”: “path-conn-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:flow-conn>]

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
49© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
All Path Connections
The path-conn-all JSON object refers to the collection of all path-conn
JSON objects.

{
“id”: “path-conn-all”,
“type”: “object”,
“properties”: {

“path-conn”: <id:path-conn-array>
}

}

Path Destination Status
The path-status-dest-obj JSON object describes the status of a path
through the specified destination node (switch and port).

{
“id”: “path-status-dest-obj”,
 “type”: “object”,
"properties": {

"status":<string>,
"switch":<string>,
"port":<number>

}
}

Path Destination Status Array
The path-status-dest-obj-array JSON object refers to an array of path-
status-dest-obj JSON objects.

{
"id": "path-status-dest-obj-array",
"type": "array",
"minItems":0,
"items": [<id:path-status-obj>]

}

Path Status
The path-status-obj JSON object is the status of the specified flow.

{
 "id": "path-status-obj",
"type": "object",
"properties": {

"id": <id:name>,
"items": <id:path-status-dest-obj-

array>
}

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
50 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
JSON Topology/Device Objects

These JSON objects are used to configure the physical network, includ-
ing monitoring.

Configure SFLOW
The sflow-config JSON object provides the IP address and port for the
SFLOW configuration.

{
“id”: “sflow-config”,
“type”: “object”,
“properties”: {

“ip-address”: <id:ip-address>,
“port”: <id:port-number>

}
}

Port Type
The port-type JSON object refers to the type for the specified port. The
possible values are:

• Copper

• Fiber

• Unavailable

{
“id”: “port-type”,
“type”: “string”

}

Port State
The port-state JSON object indicates the status of the specified port.
The possible values are:

• Up

• Down

{
“id”: “port-state”,
“type”: “string”

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
51© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Port MAC Address
The port-mac JSON object refers to the MAC address of the specified
port. A MAC address consists of six pairs of hexadecimal characters sep-
arated by a colon (:). For example: 12:45:89:AB:CD:EF.

)
“id”: “port-mac”,
“type”: “string”

}

Device Type
The device-type JSON object returns the device type. The possible
device types are:

• NX: Vello NX500 Controller

• VX: Vello VX1048 or VX3048 switch

• ?X: unknown

{
“id”: “device-type”,
“type”: “string”

}

Switch Link
The switch-link JSON object defines a link between a port on a switch
and another device based on the following properties:

• Port: Port number on the specified VX1048/VX3048 switch

• Peer name: Unique ID of the desired peer

• Peer port: Port number on the desired peer

• Peer type: Type of peer device

{
“id”: “switch-link”,
“type”: “object”,
“properties”: {

“port”: <id:port-number>,
“peer-name”: <id:switch-name>,
“peer-port”: <id:port-number>,
“peer-type”: <id:device-type>

}
}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
52 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
Switch Link Array
The switch-link-array JSON object refers to an array of switch-link
JSON objects.

{
“id”: “switch-link-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:switch-link>]

}

Switch Inventory
The switch-inv JSON object returns the following information about
the VX1048/VX3048 switches on the network:

• Host name: Host name of the switch

• Dataplane ID: Unique datapath ID assigned to the switch. Vello
suggests using the switch MAC address as part of this ID.

• Manufacturer: Switch manufacturer (Vello)

• Hardware: Switch model (VX1048 or VX3048)

• Software: VellOS firmware version that the switch is running

• Dataplane Description: Human-readable description of the Data-
plane ID

• Serial number: Unique serial number of each switch

{
“id”: “switch-inv”,
“type”: “object”,

“properties”: {
“host-name”: <string>,
“dataplane-id”: <number>,
“description-mfr”: <string>,
“description-hw”: <string>,
“description-sw”: <string>,
“description-dataplane”: <string>,
“serial-number”: <string>

}
}

Switch
The switch JSON object returns the following information about the
specified switch:

• ID: unique switch ID

• Inventory: Switch inventory information (host name, manufac-
turer, hardware, software, dataplane, and serial number)

• IP configuration: IP address configuration

{
“id”: “switch”,
“type”: “object”,
“properties”: {

“id”: <string>,
“inventory”: <switch-inv>,
“ip-config”: <config-ip>,

}
}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
53© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Switch Array
The switch-array JSON object refers to an array of switch JSON objects.

{
“id”: “switch-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:switch>]

}

Switch Connection
The switch-conn JSON object refers to the association between the
specified switch and the device(s) that switch is connected to.

{
“id”: “switch-conn”,
“type”: “object”,
“properties”: {

“name”: <id:switch-name>,
“type”: <id:device-type>,
“links”: <id:switch-link-array>

}
}

Switch Connection Array
The switch-conn-array JSON object refers to an array of switch-conn
JSON objects.

{
“id”: “switch-conn-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:switch-conn>]

}

All Switch Connections
The switch-conn-all JSON object returns a collection of all switch con-
nections.

{
“id”: “switch-conn-all”,
“type”: “object”,
“properties”: {

“switch-conn”: <id:switch-conn-array>
}

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
54 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
Switch Port
The switch-port JSON object returns the following properties for the
specified port on the specified switch:

• Number: Port number

• Current capacity: Current capacity of the physical port in kilobytes
per second (kbps)

• Max capacity: Maximum capacity of the physical port in kilobytes
per second (kbps)

• Type: Port type (can be copper, fiber, or unavailable)

• State: Port state (can be up or down)

• MAC address: Mac address of the port, which consists of six pairs
of hexadecimal characters; for example, 04:5A:CB:FA:95:23

{
“id”: “switch-port”,
“type”: “object”,
“properties”: {

“number”: <number>,
“current-capacity”: <number>,
“max-capacity”: <number>,
“type”: <id:port-type>,
“state”: <id:port-state>,
“mac”: <id:port-mac>

}
}

Switch Ports
The switch-ports JSON object lists the ports available on the specified
switch.

{
“id”: “switch-ports”,
“type”: “object”,
“properties”: {

“name”: <name>,
“count”: <number>,
“ports”: <id:switch-port-array>

}
}

Switch Ports Array
The switch-ports-array JSON object refers to an array of switch-ports
JSON objects.

{
“id”: “switch-ports-array”,
“type”: “array”,
“minItems”: 0,
“items”: [<id:switch-ports>]

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
55© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
List Switch Ports
The list-switch-ports JSON object represents the collection of switch-
ports-array objects.

{
“id”: “switch-ports-list”,
“type”: “object”,
“properties”: {

“switch-ports”: <id:switch-ports-
array>

}
}

Switch Port Statistics
The switch-port-stats JSON object returns the following statistics for
the specified port on the specified switch:

• ID: Unique ID of the specified port

• TX bytes: Total number of bytes transmitted through the port

• TX bytes per second: Number of bytes transmitted through the
port per second

• TX packets: Total number of packets transmitted through the port

• TX packets per second: Number of packets transmitted through
the port per second

• RX bytes: Total number of bytes received through the port

• RX bytes per second: Number of bytes received through the port
per second

• RX packets: Total number of packets received through the port

• RX packets per second: Number of packets received through the
port per second

• Interval: Duration in seconds

• Description: Human-readable string describing the statistics (may
be a null value)

{
“id”: “switch-port-stats”,
“type”: “object”,
“properties”: {

“id”: <id: switch-port>,
“tx-bytes”: <number>,

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
56 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

5: JSON
“tx-bytes-per-sec”: <number>,
“tx-packets”: <number>,
“tx-packets-per-sec”: <number>,
“rx-bytes”: <number>,
“rx-bytes-per-sec”: <number>,
“rx-packets”: <number>,
“rx-packets-per-sec”: <number>,
“interval”: <number>,
“description”: <string>,

}
}

IP Configuration Mode
The config-ip-mode JSON object represents the IP configuration
mode, which can be either static or DHCP.

{
“id”: “config-ip-mode”,
“type”: “string”

}

IP Configuration
The config-ip JSON object is the collection of information related to IP
configuration.

• Mode: IP address mode (static or DHCP)

• IP address: IP address

• Subnet: Subnet mask

• Gateway: Gateway IP address

{
“id”: “config-ip”,
“type”: “object”,
“properties”: {

“mode”: <id:config-ip-mode>,
“ip-addr”: <id:ip-address>,
“subnet”: <id:ip-address>,
“gateway”: <id:ip-address>

}
}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
57© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
58 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

6: cURL Examples
59© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
Accessing cURL

cURL is a command-line tool that you run either from the command
prompt (Windows) or the Terminal (OSX or Linux) to either send data to
a server or receive data from a server. The process of opening a com-
mand line depends on your operating system. You may then enter
cURL commands. The following sections list some examples of using
cURL with the Vello REST API.

Windows
To access a command line in Windows:

1. Click Start>Run to open the Run dialog.

2. Enter cmd and then press [ENTER].

Mac OSX
To access a command line in Mac OSX:

1. Navigate to the Applications\Utilities folder.

2. Open the Terminal application.

Linux/Ununtu
To access a command line in Linux or Ubuntu:

• Linux: open a bash prompt or Terminal window.

• Ubuntu: Open a bash prompt by navigating to Applica-
tions>Accessories>Terminal.

Note: You may download cURL from http://curl.haxx.se for
Windows, Mac OSX, Linux, or Ubuntu.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
60 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

6: cURL Examples
cURL Node Examples

This section contains examples of node operations using cURL.

Creating Nodes
This command creates the node 1st node that is defined by all of
objects in the instance. In this example, as part of its definition, the
node is located on port 1 of switch SW0000001E0800039E, has the net
mask 32, and the IP address 10.0.0.1.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/node/n1 -d '{"node-ele-
ment": ["SW0000001E0800039E-p1"], "id": "node",
"group-name": "BLAH", "ip-mask": 32, "descrip-
tion": "1st node", "ip-address": "10.0.0.1"}'

This command creates the node 2nd node.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/node/n2 -d '{"node-ele-
ment": ["SW0000001E0800039E-p2"], "id": "node",
"group-name": "BLAH", "ip-mask": 32, "descrip-
tion": "2nd node", "ip-address": "10.0.0.2"}'

Get Node Information
This command returns information for the node n1.

curl -k -u admin:vello123 -X GET https://
192.168.1.1/rest/v1.0/node/n1

Delete a Node
This command deletes node n1. The system deletes the specified node
without prompting you to confirm the deletion. Delete nodes with
care.

curl -k -u admin:vello123 -X DELETE https://
192.168.1.1/rest/v1.0/node/n1

Get All Nodes
This command returns a list of attributes for all nodes in the network.

curl -k -u admin:vello123 -X GET https://
192.168.1.1/rest/v1.0/node

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
61© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Create a Flow
This commend create a unidirectional flow flow 1 from node n1 to
node n2 with a maximum bandwidth of 600 and no maximum hop
count or description specified.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/flow/flow1 -d '{"destina-
tions":["n2"],"source":"n1","flow-direc-
tion":"uni","description":"FLOW","maximum-
bandwidth":600,"maximum-hop-count":null}'

Create a Flow Destination
This command defines a destination node for a multicast flow.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/flow-destination/
MCAST_FLOW/l2

Configure Static Refresh Rate
This command reconfigures the statistic refresh rate of the flow
my_flow.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/flow-stats/refresh/15/
my_flow

Configure NX500 Management IP
The following commands reconfigure the NX500 Controller manage-
ment IP address. The first command defines a static IP address.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/controller-config-ip/man-
agement -d '{"mode":"static","ip-
addr":"192.168.1.1","subnet":"255.255.0.0","gate-
way":"192.168.254.1"}'

This command defines a DHCP IP address.

curl -k -u admin:vello123 -X PUT https://
192.168.1.1/rest/v1.0/controller-config-ip/man-
agement -d '{"mode":"dhcp","ip-
addr":"0.0.0.0","subnet":"0.0.0.0","gate-
way":"0.0.0.0"}'

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
62 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
63© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com

REST API Guide
Using Python with the Vello REST API

The Vello NX/VX documentation package includes configurable and
executable Python code that uses the REST API. You must have a
Python interpreter installed on your computer to work with Python
code. You may download a Python interpreter from http://
www.python.org/download/. The Python website also contains docu-
mentation and tutorials at http://www.python.org/doc/.

The available Python scripts allow you to:

• Work with nodes (see next section)

• Work with flows (see “Flow Operations” on page 66)

• Enable, view, and disable statistics (see “Statistics” on page 70)

The Vello REST API Python scripts use the following open-source librar-
ies (available online):

• httplib: This library contains the HTTP methods (GET, PUT, POST,
DELETE) for making HTTP requests to the REST API.

• JSON: This library is required for processing the resulting JavaScript
Object Notation (JSON) response.

Node Operations
You may use Python to perform the following node operations with the
REST API:

• “Add Node” on page 64

• “Show Single Node” on page 65

• “List All Nodes” on page 65

• “Delete Single Node” on page 66

• “Delete All Nodes” on page 66

Add Node
The node add function adds a node. To use this function:

node add --id=<node ID> --switchport=<switchport>
--ipaddr=<A.B.C.D> --ipmask=<yyy.yyy.yyy.yyy> --
desc=<descstring>

Where:

• <node ID> is the unique ID for the node you are creating.

• <switchport> is the switch DPID & port number information
(e.g SW0000001E0800039E-p1) where you want to add your
node>.

• <A.B.C.D> is the properly formatted IP address for the new node.

• <yyy.yyy.yyy.yyy> is the netmask for the new node.

• <descstring> is a free-text entry (up to 255 haracters) describ-
ing the node.

The output from this operation is:

• On success: Node successfully added

• On failure: Node failed to be added

•
AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
64 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
Show Single Node
The node show function displays detailed information for the selected
node. To use this function:

node show --id=<node ID>

Where:

<node ID> is the unique ID of the node you are viewing.

The output from this operation is:

• On success:

Node successfully retrieved
Node ID: <node ID>
Switchport: <switchport>
IP/Mask: <IP>/<mask>
Desc: <descstring>

• On failure: Node failed to be retrieved

Where:

• <node ID> is unique ID of the selected node.

• <switchport> is the specific VX1048/VX3048 switch and port.

• <IP> is the IP address of the specified port.

• <mask> is the netmask of the specified port.

• <descstring> is free text describing the node.

List All Nodes
The node list function displays either summary or detailed information
for all nodes. To use this function:

• node list: Lists summary information for all nodes.

• node list --detail: Lists detailed information for all nodes.

The output for this operation is:

• On success (summary):

Node list successfully retrieved
Found <#> nodes:
Node ID: <node 1 ID>
...
Node ID: <node n ID>

• On success (detail):

Node list successfully retrieved
Found <#> nodes:
Node ID: <node 1 ID> (Switchport: <switchport>,
IP: <IP>/<mask>, Desc: <descstring>)
...
Node ID: <node n ID (Switchport: <switchport>,
IP: <IP>/<mask>, Desc: <descstring>)

• On failure: Node list failed to be retrieved

Where:

• <node _ ID> is the unique ID of each node.

• <switchport> is the specific VX1048/VX3048 switch and port.

• <IP> is the IP address of the specified port.

• <netmask> is the netmask of the specified port.

• <descstring> is free text describing the node.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
65© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Delete Single Node
The node delete function deletes the specified node. To use this func-
tion:

node delete --id=<node ID>

Where:

<node ID> is the unique ID of the node you are deleting.

The output from this operation is:

• On success: Node successfully deleted

• On failure: Node failed to be deleted

•

Delete All Nodes
The node delete-all function deletes all nodes. To use this function:

node delete-all

The output from this operation is:

Node <node 1 ID> successfully deleted
...
Node <node n ID> successfully deleted

Where:

<node _ ID> is the unique ID of each node being deleted.

Flow Operations
You may use Python to perform the following flow operations with the
REST API:

• “Add a Flow” on page 66

• “Add Multicast Destination Node” on page 67

• “Display Flow Status” on page 67

• “Display Flow Trace” on page 67

• “Show a Flow” on page 68

• “List all Flows” on page 69

• “List Switches” on page 69

• “Delete a Flow” on page 70

• “Delete Multicast Destination Node from a Flow” on page 70

• “Delete all Flows” on page 70

Add a Flow
The flow add function adds a flow. To use this function:

flow add --id=<flow ID> --node1=<node 1 ID> --
node2=<node 2 ID> --direction=<uni|bi> [--band-
width=<bw>] [--maxhops=<hops>]

Where:

• <flow ID> is the unique ID to assign to this flow.

• <node 1 ID> is the Vello VX1048/VX3048 switch where the flow
will originate (source).

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
66 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
• <node 2 ID> is the Vello VX1048/VX3048 switch where the flow
will terminate (destination).

• <uni|bi> specifies whether the flow is unidirectional (from node
1 to node 2) or bidirectional.

- uni specifies a unidirectional flow.

- bi specifies a bidirectional flow.

• <bw> is the bandwidth reservation for this flow, in kbps. IK is
defined as 1,000 bytes, not 1,024.

• <hops> is the maximum number of hops this flow may use
between source and destination nodes. Specifying a number that is
too low for the available network topology will cause the flow to
fail.

The output from this operation is:

• On success: Flow successfully added

• On failure: Flow failed to be added

Add Multicast Destination Node
The flow add-node function adds a multicast destination node. To use
this function:

flow add-node --id=<flow ID> --node1=<node ID>

Where:

• <flow ID> is the unique ID of the flow that the destination will
receive (see “Add a Flow” on page 66 and “List all Flows” on page 69).

• <node ID> is the unique ID of the multicast node you are creat-
ing.

The output from this operation is:

• On success: Multicast flow destination success-
fully added

• On failure: Multicast flow destination failed to
be added

Display Flow Status
The flow status function displays the status of the specified flow. To
use this function:

flow status --id=<flow ID>

Where:

<flow ID> is the unique ID of the flow you are viewing.

The output from this operation is:

Flow ID: <flow ID>
node: (Switchport: <switchport> Status: <status
string>)

Where:

• <switchport> is the specific VX1048/VX3048 switch and port.

• <status string> is the current flow status.

Display Flow Trace
The flow connection function provides either a summary or detailed
trace of the path taken by the specified flow To use this function:

flow connection --id=<flow ID>

Where:

<flow ID> is the unique ID of the flow you are tracing.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
67© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
The output from this operation is:

Flow ID: <flow ID>
Count: <number of switch flows>
Switch: <first switch> Ingress-port: [<port #>]
Egress-port: [<port #>]
...
Switch: <last switch> Ingress-port: [<port #>]
Egress-port: [<port #>]

Where:

• <____ switch> is the ID of each switch on the flow.

• <port #> is the specific port number where data entered
(ingress) and exited (egress) on each switch.

Show a Flow
The flow show function displays either summary or detailed informa-
tion for the selected flow. To use this function:

• flow show --id=<flow ID>: Lists summary information for
the selected flow.

• flow show --id=<flow ID> --detail: Lists detailed
information for the selected flow.

Where:

<flow ID> is the unique ID of the selected flow.

The output from this operation is:

• On success (summary):

Flow successfully retrieved
Flow ID: <flow ID>
node1: <node 1 ID>

node2: <node 2 ID>
Direction: <uni|bi>

• On success (detail):

Flow successfully retrieved
Flow ID: <flow ID>
node1: <node 1 ID> (Switchport: <switchport>,
IP: <IP>/<mask>, Desc: <descstring>)
node2: <node 2 ID> (Switchport: <switchport>,
IP: <IP>/<mask>, Desc: <descstring>)
Direction: <uni|bi>

• On failure: Flow failed to be retrieved

• <flow ID> is the unique ID to assign to this flow.

• <node 1 ID> is the Vello VX1048/VX3048 switch where the flow
will originate (source).

• <node 2 ID> is the Vello VX1048/VX3048 switch where the flow
will terminate (destination).

• <uni|bi> specifies whether the flow is unidirectional (from node
1 to node 2) or bidirectional.

- uni specifies a unidirectional flow.

- bi specifies a bidirectional flow.

• <bw> is the bandwidth reservation for this flow, in kbps. IK is
defined as 1,000 bytes, not 1,024.

• <hops> is the maximum number of hops this flow may use
between source and destination nodes. Specifying a number that is
too low for the available network topology will cause the flow to
fail.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
68 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
List all Flows
The flow list function displays either summary or detailed information
for all flows. To use this function:

• flow list: Lists summary information for all flows.

• flow list --detail: Lists detailed information for all flows.

The output for this operation is:

• On success (summary):

Flow list successfully retrieved
Found <#> flows:
Flow ID: <flow 1 ID>
...
Flow ID: <flow n ID>

• On success (detail):

Flow list successfully retrieved
Found <#> flows:
Flow ID: <flow 1 ID>
node1: <node1 ID> (Switchport: <switch and
port>, IP: <IP>/<mask>, Desc: <descstring>)
node2: <node2 ID> (Switchport: <switch and
port>, IP: <IP>/<mask>, Desc: <descstring>)
Direction <uni|bi>
...
Flow ID: <flow n ID)
node1: <node1 ID> (Switchport: <switch and
port>, IP: <IP>/<mask>, Desc: <descstring>)
node2: <node2 ID> (Switchport: <switch and
port>, IP: <IP>/<mask>, Desc: <descstring>)
Direction <uni|bi>

• On failure: Flow list failed to be retrieved

Where:

• <#> is the number of flows found.

• <flow _ ID> is the unique ID of each flow.

• <node_ ID> is unique ID of each Vello VX1048/VX3048 switch on
each flow.

• <switchport> is the specific VX1048/VX3048 switch and port.

• <IP> is the IP address of the specified port.

• <mask> is the netmask of the specified port.

• <descstring> is a free text entry (up to 255 characters) describ-
ing the node.

• <uni|bi> is the flow direction (unidirectional or bidirectional,
respectively).

List Switches
The switch list function lists each of the VX1048/VX3048 switches
found. To use this function:

switch list

The output from this operation is:

Found <#> switches:
Switch: <first switch name>
...
Switch: <last switch name>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
69© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Delete a Flow
The flow delete function deletes the specified flow. To use this func-
tion:

flow delete --id=<flow ID>

Where:

<flow ID> is the unique ID of the flow you are deleting.

The output from this operation is:

• On success: Flow successfully removed

• On failure: Flow failed to be removed

Delete Multicast Destination Node from a Flow
The flow delete-node function deletes a multicast destination node
from a flow. To use this function:

flow delete-node --id=<flow ID> --node1=<node ID>

Where:

• <flow ID> is the unique ID of the flow that the destination is
receiving (see “Add a Flow” on page 66 and “List all Flows” on
page 69).

• <node ID> is the unique ID of the node being deleted.

The output from this operation is:

• On success: Multicast flow destination success-
fully deleted

• On failure: Multicast flow destination failed to
be deleted

Delete all Flows
The flow delete-all function deletes all flows. To use this function:

flow delete-all

The output from this operation is:

• On success:

Flow <flow 1 ID> successfully deleted
...
Flow <flow n ID> successfully deleted

• On failure: Multicast flow destination failed to
be deleted

Where:

<flow _ ID> is the unique ID of each flow.

Statistics
You may use Python to perform the following flow operations with the
REST API:

• “Enable/Disable Flow Statistics” on page 71

• “Enable/Disable Flow Statistics” on page 71

• “Show Port Statistics” on page 71

• “Show Flow Statistics” on page 71

• “Show Node Statistics” on page 72

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
70 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
Enable/Disable Flow Statistics
The stats flow function enables or disables statistics reporting for the
selected path. To use this function:

• stats flow enable --id=<path ID> --inter-
val=<time>: Enables statistics reporting for the selected flow.

• stats flow disable --id=<path ID>: Disables statistics
reporting for the selected flow.

Where:

<path ID> is the unique ID of the selected path.

The output from this operation is:

• On success (enable): Statistics for connection suc-
cessfully set to refresh interval <time>

• On success (disable): Statistics for connection suc-
cessfully disabled

• On error: Failed to set connection statistics

Where

<time> is the time interval in seconds.

Show Port Statistics
The stats port show function displays statistics for the selected port. To
use this function:

stats port show --switchport=<switchport>

Where:

<switchport> is the specific VX1048/VX308 switch and port.

The output from this operation is:

• On success:

Port <switchport> statistics:
TX packets: <value> bytes: <value>
RX packets: <value> bytes: <value>
Rates (averaged over <interval> seconds):
TX packets/sec: <value> bytes/sec: <value>
RX packets/sec: <value> bytes/sec: <value>

• On error: Failed to retrieve port statistics

Show Flow Statistics
The stats flow show function displays statistics for the selected con-
nection. To use this function:

• stats flow show --id=<path ID>: Shows the flow for the
selected path ID.

• stats flow show --node1=<node 1 ID> --
node2=<node 2 ID> --direction=<uni|bi>: Shows the
flow between the selected notes.

Where:

• <path ID> is the unique ID of the selected path.

• <node _ ID> is the unique ID of the selected node.

• <uni|bi> is the flow direction (unidirectional or bidirectional,
respectively).

The output from this operation is:

• On success:

Connection <flow ID> statistics:
Packets: <value> Bytes: <value>

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
71© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
Rates (averaged over <interval> seconds):
Packets/sec: <value> Bytes/sec: <value>

• On error: Failed to retrieve connection statis-
tics

Show Node Statistics
The stats node show function lists all connections to the selected cli-
ent/product and prints the statistics for each connection. To use this
function:

stats node show --id=<node ID>

Where:

<node ID> is the unique ID of the selected path.

The output from this operation is:

• On success:

Connection <first <flow ID> statistics:
Packets: <value> Bytes: <value>
Rates (averaged over <interval> seconds):
Packets/sec: <value> Bytes/sec: <value>
...
Connection <last <flow ID> statistics:
Packets: <value> Bytes: <value>
Rates (averaged over <interval> seconds):
Packets/sec: <value> Bytes/sec: <value>

• On error: Failed to retrieve node statistics

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
72 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
Sample Python Scripts

The following Python scripts provide a basic example of querying the
statistics for a particular path. The following sample scripts are split into
two files:

• common.py handles the connection setup for all REST API calls

• path_stats.py demonstrates a request for path statistics and how to
access the response fields.

common.py
The common.py script handles connection setup for REST API calls:

#!/usr/bin/env python
import httplib
import base64
login credentials
https_username = "admin"
https_password = "vello123"
set these to point to the controller
controller_addr = '172.18.89.138'
controller_port = 443
headers = {}
headers['Content-Type'] = 'application/json'
headers['Content-Length'] = 0

headers['User-Agent'] = 'Vello REST API script'
headers['Accept'] = '*/*'
def get_http_code(code):

return httplib.responses[code]
def transact(method, uri, body):

conn = httplib.HTTPSConnec-
tion(controller_addr, controller_port)

conn.connect()
 request = conn.putrequest(method, uri)
headers['Content-Length'] = len(body)
auth = base64.encodestring("%s:%s" %

(https_username, https_password)).strip()
headers['Authorization'] = "Basic %s" % auth
for k in headers:

conn.putheader(k, headers[k])
conn.endheaders()
conn.send(body)
resp = conn.getresponse()
resp_read = resp.read()
conn.close()
return (resp.status, resp.reason,

resp_read)

path_stats.py
The path_stats.py script gets path statistics:

Note: You may download these sample scripts from Vello.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
73© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

REST API Guide
#!/usr/bin/env python
import sys
import common
import json
validate the arguments
if (len(sys.argv) != 2):

print "Incorrect number of parameters."
print "Usage: " + sys.argv[0] + " <flow ID>"
 exit(0)

set up the request method and URI
req_method = "GET"
req_str = "/rest/v1.0/flow-stats/" + sys.argv[1]
perform the transaction and get the response
resp = common.transact(req_method, req_str, "")
code_str = common.get_http_code(resp[0])
status_str = str(resp[0]) + " " + code_str
print "Status: "
print status_str
print ""
Raw output
print "Response: "
print resp[2]
print ""
Generic JSON output with formatting
print "JSON: "
json_reply = json.loads(resp[2])
print json.dumps(json_reply, sort_keys=True,
indent=4)
print ""
This operation returns the following output:

Status:

200 OK
Response:
{

"id": "mpls", "bytes": 903607386,
"bytes-per-sec":0, "packets": 7059432,
"packets-per-sec": 0, "interval": 10,
"description": ""

}
JSON:
{

"bytes": 903607386,
"bytes-per-sec": 0,
"description": "",
"id": "mpls",
"interval": 10,
"packets": 7059432,
"packets-per-sec": 0

}

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
74 © 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

7: Python Scripts
This page intentionally left blank.

AUTHORED BY ANTHONY HERNANDEZ - (415)786-2081 - anthony94122@outlook.com
75© 2013 Vello Systems, Inc. | ALL RIGHTS RESERVED

EZ - (415)786-2081 - anthony94122@outlook.com
NX500, VX1048, VX3048 REST API Guide, v1.00 (06/2013)

This book or parts thereof may not be reproduced in any form without
the written permission of the publishers. Printed in the United States of
America. Copyright 2013 by Vello Systems™. All rights reserved.

Contact Information:

Vello Systems, Inc.
1530 O’Brien Drive
Menlo Park, CA 94025
Phone: 650-324-7600
Fax: 650-324-7601
Toll-free: 1-866-MY-GIGES (1-866-694-4437)
Email: support@vellosystems.com
Website: www.vellosystems.com

AUTHORED BY ANTHONY HERNAND

	Table of Contents
	1: Getting Started
	API Overview
	About RESTful APIs

	About the Vello REST API
	Vello REST API System Requirements
	Accessing the Vello REST API

	About This Manual
	Formatting Conventions
	Organization

	Additional Information
	Related Documentation
	Contact Information

	2: Vello REST API Structure
	Definitions
	Software Defined Network
	Node
	Flow
	Unicast Flow
	Multicast Flow
	Path

	Components and Capabilities
	Flow Computation
	Topology Discovery
	Communications
	Statistics and Reporting

	REST API Methods

	3: NX500 Configuration
	Accessing the REST API
	Default NX500 Controller Settings
	UBM Notes

	4: Vello REST API Methods
	About the Vello REST API Methods
	API Descriptions

	Node REST APIs
	Node
	Node Names
	Node Statistics

	Flow REST APIs
	Flow
	Flow Names
	Flow Destination
	Flow Statistics
	Flow Status
	Flow Connection

	Topology/Device REST APIs
	NX500 Controller IP Configuration
	Switch
	Switch Names
	Switch Ports
	Switch Connection
	Switch Port Statistics

	REST API Error Codes

	5: JSON
	JSON Schema
	JSON Common Objects
	IP Address
	IP Mask
	Switch Name
	Port Number
	Switch Port Name
	Name
	Name Array
	Name List
	Port Array

	JSON Node Items
	Node Element
	Node Status
	Create Node Object
	Node Object
	Node Object Array
	List Node Objects
	Query Node
	Node Statistics

	JSON Flow Objects
	Direction
	Bandwidth
	Hop Count
	Flow Status
	Create Flow
	Flow Object
	Flow Object Array
	Flow Object List
	Flow Statistics
	Physical Path (Switch)
	Physical Path (Switch Array)
	Physical Path
	Physical Path Array
	Flow Connection
	Path Connection Array
	All Path Connections
	Path Destination Status
	Path Destination Status Array
	Path Status

	JSON Topology/Device Objects
	Configure SFLOW
	Port Type
	Port State
	Port MAC Address
	Device Type
	Switch Link
	Switch Link Array
	Switch Inventory
	Switch
	Switch Array
	Switch Connection
	Switch Connection Array
	All Switch Connections
	Switch Port
	Switch Ports
	Switch Ports Array
	List Switch Ports
	Switch Port Statistics
	IP Configuration Mode
	IP Configuration

	6: cURL Examples
	Accessing cURL
	Windows
	Mac OSX
	Linux/Ununtu

	cURL Node Examples
	Creating Nodes
	Get Node Information
	Delete a Node
	Get All Nodes
	Create a Flow
	Create a Flow Destination
	Configure Static Refresh Rate
	Configure NX500 Management IP

	7: Python Scripts
	Using Python with the Vello REST API
	Node Operations
	Add Node
	Show Single Node
	List All Nodes
	Delete Single Node
	Delete All Nodes

	Flow Operations
	Add a Flow
	Add Multicast Destination Node
	Display Flow Status
	Display Flow Trace
	Show a Flow
	List all Flows
	List Switches
	Delete a Flow
	Delete Multicast Destination Node from a Flow
	Delete all Flows

	Statistics
	Enable/Disable Flow Statistics
	Show Port Statistics
	Show Flow Statistics
	Show Node Statistics

	Sample Python Scripts
	common.py
	path_stats.py

